International ANSPs Brainstorm About Prioritizing Resources

In recent years, it’s become increasingly clear that many people and businesses are interested in the Federal Aviation Administration’s (FAA) spectrum. Now, thanks to a new Congressional action, the FAA is working with other government agencies to examine the feasibility of auctioning off some of its spectrum and using the proceeds to help fund future surveillance activities.

During a Tuesday afternoon session, four FAA directors and managers explained this plan in detail, and discussed why they’re so excited about it.

“You can be in our agency working outside the normal swim lanes to try and pull this together, and are working with other agencies to lay the foundation for this,” said Carl Burleson, deputy assistant administrator, FAA Office of Policy. “I’ve been with the FAA a long time and have seen few efforts that are working this hard to get something done. These kinds of opportunities don’t come along every day.”

Burleson said the FAA has recently wondered if it can surrender some of its spectrum, but concluded there was no money to explore a top-down, systematic look into this.

But in its last update, Congress approved $500 million for federal agencies to explore the idea of re-leasing spectrum, and also agreed to compensate agencies at a rate of 110 percent for the spectrum they give up in a 2024 auction.

“It’s not every day you have the ability to access tens of millions of dollars from the private market to compensate agencies,” said moderator Neil Planzer, ATCA chairman.

“Each one of these ANSPs has different issues. So when we say how’s NextGen working, how’s SESAR doing, they each have different answers,” Planzer said.

Miclía Albertus-Verboom, Dutch Caribbean Air Navigation Service Provider (DC-ANSP), said corporatization of her country’s ANSP means it’s not engaged in political discussions like other Caribbean island ANSPs that aren’t separated from their government, and consequently is better able to prioritize its resources.

“But because we’re a small entity, we have to work with bigger ANSPs to reach our goals,” she said.

A couple years ago, Albertus-Verboom said DC-ANSP didn’t think of airlines as its customers. “We were there just to provide the service, but that is changing.” However, DC-ANSP’s customer-service efforts aren’t at the level of other regions, she said, because the challenges of air traffic management in an island system demands much of the ANSP’s time.

Rudy Kellar, NAV CANADA, said one of his ANSP’s priorities is tools for controllers. “Supporting controllers is important.”

Continued on page 9

FAA Discusses Spectrum Auction and Surveillance Strategy

In recent years, it’s become increasingly clear that many people and businesses are interested in the Federal Aviation Administration’s (FAA) spectrum. Now, thanks to a new Congressional action, the FAA is working with other government agencies to examine the feasibility of auctioning off some of its spectrum and using the proceeds to help fund future surveillance activities.

During a Tuesday afternoon session, four FAA directors and managers explained this plan in detail, and discussed why they’re so excited about it.

“You can be in our agency working outside the normal swim lanes to try and pull this together, and are working with other agencies to lay the foundation for this,” said Carl Burleson, deputy assistant administrator, FAA Office of Policy. “I’ve been with the FAA a long time and have seen few efforts that are working this hard to get something done. These kinds of opportunities don’t come along every day.”

Burleson said the FAA has recently wondered if it can surrender some of its spectrum, but concluded there was no money to explore a top-down, systematic look into this.

But in its last update, Congress approved $500 million for federal agencies to explore the idea of re-leasing spectrum, and also agreed to compensate agencies at a rate of 110 percent for the spectrum they give up in a 2024 auction.

“It’s not every day you have the ability to access tens of millions of dollars from the private market to compensate agencies,” said moderator Neil Planzer, ATCA chairman.

“Each one of these ANSPs has different issues. So when we say how’s NextGen working, how’s SESAR doing, they each have different answers,” Planzer said.

Miclía Albertus-Verboom, Dutch Caribbean Air Navigation Service Provider (DC-ANSP), said corporatization of her country’s ANSP means it’s not engaged in political discussions like other Caribbean island ANSPs that aren’t separated from their government, and consequently is better able to prioritize its resources.

“But because we’re a small entity, we have to work with bigger ANSPs to reach our goals,” she said.

A couple years ago, Albertus-Verboom said DC-ANSP didn’t think of airlines as its customers. “We were there just to provide the service, but that is changing.” However, DC-ANSP’s customer-service efforts aren’t at the level of other regions, she said, because the challenges of air traffic management in an island system demands much of the ANSP’s time.

Rudy Kellar, NAV CANADA, said one of his ANSP’s priorities is tools for controllers. “Supporting controllers is important.”

Continued on page 9
7:30 a.m. - 1 p.m.
Registration Open
Convention Center Prefunction Area

7:30 - 8:30 a.m.
Welcome Coffee
Maryland Ballroom Foyer

8:30 - 9:45 a.m.
UAS in the USA
Maryland Ballroom A&C
Moderator: Craig Marcinkowski, Gryphon Sensors
Speakers: Dallas Brooks, Mississippi State University; John Cavolowsky, NASA; Travis Mason, Google; Pasha Saleh, AirMap, Ron Pappas, FAA

8:30 a.m. - 2:00 p.m.
Exhibit Hall Open
Prince George’s Exhibit Halls D&E

9:45 - 10:45 a.m.
Break with Exhibitors

11:00 - 11:30 a.m.
Keynote Address
Maryland Ballroom B&D
Hon. Christopher A. Hart, National Transportation Safety Board (NTSB)

11:30 a.m. - 1 p.m.
“Working Lunch Keynote”
Maryland Ballroom B&D
Teri Bristol, COO, FAA Air Traffic Organization (ATO)

1 - 2:15 p.m.
A Cross-Generational Industry Perspective
Maryland Ballroom A&C
Moderator: Lillian Ryals, The MITRE Corporation
Speakers: Paul Engola, Leidos; Andy Hoag, Aireon; Mike Ball, Northrop Grumman; Dave Rhodes, CSRA; Ariel Scheirer, Ascent Consulting Company; Sarah Staab, DTIS

2:30 - 3 p.m.
Keynote Address
Hon. Michael Huerta, Administrator, FAA
Maryland Ballroom A&C

6 - 7 p.m.
2016 Glen A. Gilbert Memorial Award Reception
Maryland Ballroom Foyer
Sponsored by:

3 p.m.
Closing Remarks
Peter F. Dumont, President and CEO, ATCA
Maryland Ballroom A&C

9 - 10 p.m.
Glen A. Gilbert Dessert Reception
Lower Atrium
Sponsored by:

ATCA Staff
Peter F. Dumont
President and CEO
Marion Brophy
Communications Specialist
Ken Carlisle
Director, Meetings and Expositions
Theresa Clair
Associate Director, Meetings and Expositions
Glenn Cudaback
Manager, Digital Media and Marketing
Abigail Glenn-Chase
Director, Communications
Ashley Haskins
Office Manager
Kristen Knott
Writer & Editor
Christine Oster
Chief Financial Officer
Paul Planzer
Manager, ATC Programs
Rugger Smith
International Development Liaison
Sandra Strickland
Exhibition and Events Coordinator
Tim Wagner
Membership Manager
Wednesday, October 19

8:30 a.m.
UAS in the USA

Now, let’s talk about technology. 2016 has been the year of the drone. The constant stream of new UAS technologies and capabilities has been akin to Christmas morning (made slightly ironic seeing how many of us will probably receive drones this holiday season). However, the FAA has the unfortunate task of taking away our toys until we eat our vegetables. Integrating UAS to a NAS built for manned aircraft, and keeping manufacturers, ANSPs, and users happy – all the while keeping the NAS safe (always the FAA’s number one priority) – is no easy task.

1 p.m.
A Cross-Generational Industry Perspective

The conference concludes with a big picture view of our industry and a recap of the last three days as told by six people all at different stages of their careers: two veterans, two young professionals, and two just starting out in aviation. Our panelists will talk of highs and lows at the conference and why the ATCA Annual – a veritable microcosm of our industry – is so important in one’s career evolution in aviation.
The Time Has Come for Time-Based Management

The FAA is transitioning the National Airspace System (NAS) from the legacy of a largely tactical surveillance and separation system. This transition is driven by the need to accommodate increased air traffic demand while minimizing the downstream effects of trajectory changes such as increased fuel burn, decreased capacity, and operational inefficiencies. The transition involves efforts to implement Time-Based Management (TBM), which leverages new tools and technologies to support more effective, dynamic scheduling of aircraft movements.

Time-Based Management Has Already Begun

Basic forms of time-based management are already in operation, such as time-based metering and prioritization of operations. However, the transition to full-scale TBM involves enhancements that support more efficient and flexible operations.

Time-Based Management and TBO Are Important

The transition to time-based management is imperative to more efficiently use our airspace capacity and to counter inefficient flight operations and flight delays. A major goal of the FAA’s TBO implementation efforts is mitigating the impact of adverse weather, which is often responsible for the majority of flight delays on any given day. TBO enables controllers to jointly determine the future position of an aircraft at any given time, the NAS will become increasingly efficient.

Why Time-Based Management and TBO Are Important

The transition to time-based management is imperative to more efficiently use our airspace capacity and to counter inefficient flight operations and flight delays. A major goal of the FAA’s TBO implementation efforts is mitigating the impact of adverse weather, which is often responsible for the majority of flight delays on any given day. TBO enables controllers to jointly determine the future position of an aircraft at any given time, the NAS will become increasingly efficient.

NEXTGEN THEATER SCHEDULE

Wednesday, October 19th

Achieving NextGen

10 - 11 a.m.

Achieving a Vision for Remote Tower Services in the US

Speaker: Andras Kovacs, FAA

Don’t Miss the FAA Drone Cage – now on display INSIDE the Exhibit Hall! Demos will take place throughout the week.
IT’S TIME FOR A NEW APPROACH TO ATM

With the ever-growing amount of traffic in the sky, air traffic management (ATM) is a critical priority that requires continuous progress. Working together with industry and government organizations, Boeing is committed to an ATM transformation that improves safety, efficiency and the environment for all. At the core of Boeing’s ATM solutions are secure network-centric operations that will incorporate the capabilities of modern airplanes, as well as ensure global interoperability and real-time access to critical information. The time is now, and Boeing is ready to help.

boeing.com/commercial
In his final keynote address as ATCA chair, change was on Neil Planzer’s mind.

“Change is hard. But just because it’s hard doesn’t mean you shouldn’t do it,” said Planzer, who is retiring from Boeing but will continue working in the industry.

The air traffic control (ATC) industry is not quick to change, he said, but change is a necessary successor to NextGen and SESAR implementation.

That’s because NextGen was designed to promote efficiency, capacity, and safety, but not outcomes, Planzer said.

“The US has done a very good job of deploying NextGen technology, but we haven’t changed the process and procedures to match that. We won’t finish what we have in NextGen until we address the outcomes,” he said. “We as an industry need to be part and parcel to driving that change. The personnel in the FAA are no different than we are—people want that change too.”

With NextGen, the ATC industry has the ability to change the very framework of how it approaches safety in the future, Planzer said.

“Historically, change in the ATC world has been driven by mistakes and accidents, Planzer said. He recounted how as a boy, he was profoundly affected by seeing the debris from a horrendous plane crash in his Brooklyn neighborhood. That 1960 crash, known as the Park Slope accident, forced change because it was IHS Jan to continue using the existing system.

“TCATS (transportable command and telemtry system) was part of the outcome of that accident. It was the greatest safety innovation in the last 50 years,” Planzer said. “But we’re in a place now where we can’t wait for a tragedy to change the system.”

“We cannot be risk averse to change,” he continued. “We have to understand where the outcomes are and make them happen,” both domestically and globally.

Risk aversion doesn’t allow an airplane and a ground system to do what they do best. “Today’s airplanes are no longer stupid. Look at a new 787, a new A380—they’re unparalleled in capability,” he said. “And controllers are a very valued part of the system—another tier of the safety system.”

Together, they can work with the rest of the ATC industry to create a “Next NextGen” or a NextGen Phase 2, Planzer said.

“I don’t care what you call it, but it better not be the end. That spectrum, that calculus, that arc of NextGen must go on,” he said. “What we want to do is use the system smarter, use it better, use it more valuable. Catastrophic motivation is not how you change the system. Intellect, outlook, and strategic outcomes is how you change the system.”
Terminal Automation Modernization and Replacement (TAMR) Program: Successful Partnering for a Common Goal

The TAMR team implemented Raytheon’s Standard Terminal Automation Replacement System, known simply as STARS, through a highly successful and proven phased approach that required the same type of harmonious synchronization among its collaborators that air traffic controllers require on taxiways, runways, and skyways around the country. The complexity of this undertaking should not be understated. In some ways it’s like changing the tires of a moving car at 60 MPH—a seemingly impossible task. The installation of the highly modernized and reliable open-architecture air traffic automation system needed to be integrated while not adversely affecting the nation’s air traffic. The system includes new computer processing and communication equipment, high-resolution color displays and new safety critical software, and multi-sensor fusion tracking in addition to other new hardware and software features.

Considering that the US airspace is the busiest and most complex (as well as the safest!) in the world, it’s easy to understand the critical importance of ensuring that the technology that controls the terminal airspace (within 60 miles of any airport) is the most sophisticated and state of the art. That’s why the key features of safety, stability, and availability sat atop the TAMR team’s collective punch list, as they implemented STARS.

As the TAMR team continues its march to implement STARS in 330 US facilities, including every major airport in the country, the pace of progress has been nothing short of astounding. This year alone, Raytheon’s STARS technology has been installed at 58 airports, bringing the total number of modernized and upgraded facilities to 270. In fact, in 2016, the TAMR team will deploy STARS at a rate of one site per week.

Once new equipment is installed, continued on page 12

STARS by the Numbers

- Over 2.5 million software lines of code
- One national software baseline with flexibility/adaptability to cater to the needs of 330 different facilities
- 16 sensors (long/short range radars plus ADS-B and MLAT interfaces)
- Supports up to 160 controller workstations
- 1350 system tracks with interactive multiple-model fusion tracker (optimized for terminal airspace, but able to track high performance military aircraft)
- System plane that can cover up 2048 x 2048 nmi
- State-of-the-art conflict alert and low-altitude monitoring and alerting
- “NextGen ready” - Support for Area Navigation (RNAV) and RNP with FMA, PRDA, CRDA, TSAS, Wake RECAT and ATPA

Wednesday, October 19

Exhibit Hall Theater Schedules and Abstracts

AIOREON FLY-BY THEATER

9 - 10:15 a.m.
YAP Panel on How to Stay Engaged
Opportunities for career growth are critical to ensuring that today’s early career professionals gain the skillsets needed to provide future leadership to the aviation industry. Advancement opportunities also provide career satisfaction, helping to ensure that promising future leaders remain engaged in the aviation industry. This panel will provide perspectives from several generations of the workforce on the type of activities early career professionals are seeking for development and growth and what activities have been effective for organizations to develop and retain early career professionals.

Moderators: Katie Kondub, Noblis; Lee Weinstein, Leidos
Speakers: Cindy Castillo, CSSI Inc.; Jon Standley, FAA; Kelly Mulholland, FAA; Mark Cianni

ATCA ARENA

9:30 - 11:00 a.m.
Spectrum Efficient National Surveillance Radar (SENSR) Program – Cross Agency Workshop
The Department of Transportation (DOT) - Federal Aviation Administration (FAA), in partnership with the Department of Defense (DoD), Department of Homeland Security (DHS), and Department of Commerce’s National Oceanic and Atmospheric Administration (NOAA), intends to stand up a cross-agency program, titled Spectrum Efficient National Surveillance Radar (SENSR), to assess the feasibility of acquiring new surveillance solutions (potentially radar or non-radar) that may result in a consolidation of incumbent legacy surveillance radars (e.g. long range aircraft, short range aircraft, and weather surveillance), or a system of systems surveillance capability. If successful, this effort may result in making the 1300 – 1550 MHz band available for reallocation to shared Federal and/or non-Federal use.

This meeting will allow for each Agency / Department to provide their responsibility, plans and mission for the overall program.

Moderator: Rebecca Guy, FAA
Speakers: Mike Freie, FAA; Steven (Smokey) Robinson, DoD; Rich Booth, DHS; Mike Istok, NOAA
CGH Technologies Completes Implementation of TALPA Into FNS

CGH Technologies (CGH) announced that it has successfully completed the implementation of Takeoff and Landing Performance Assessment (TALPA) data into the Federal NOTAM System (FNS). Effective October 1, 2016, airports use TALPA capability to conduct runway assessments and distribute critical and timely runway conditions through a newly formatted Field Condition (FICON) Notice to Airmen (NOTAMs).

Within hours after the system went live early Saturday morning, October 1, there were close to 250 FICON NOTAMs already issued.

“Supporting the FAA’s commitment to enhancing safety and providing system operators with real-time information is at the core of what we do here at CGH,” said CGH President Cindy Troutman. The TALPA initiative has been a top priority for the FAA. Following the runway overrun accident at Chicago Midway airport, the FAA Administrator chartered a joint Agency and industry committee to develop new methodologies for conveying actual runway conditions. Airport operators will perform assessments on paved runway surfaces to identify runway contaminants such as snow, ice, slush, and water, and report the current conditions to system operators using the NOTAM system designed, developed, and implemented by CGH. Runway contaminants can have an adverse impact on aircraft performance.

Airport operators will use a Runway Condition Assessment Matrix (RCAM) which will provide a more accurate runway condition report and provide pilots with a more consistent way of identifying the severity, type, and depth, which will help the pilot better plan for the reported runway conditions. The information is provided in a standardized format and interpreted based on airplane performance data supplied by airplane manufacturers. The RCAM replaces subjective judgments of runway surface conditions with objective assessments tied directly to contaminant types and depth of the contaminant through the use of the FNS.

The FNS system is used by various stakeholders including airports, FAA’s Air Traffic Organization, Flight Service Stations (FSS), the Department of Defense (DoD), and numerous other aviation consumers. FNS generally publishes a NOTAM in fewer than one second, and provides a single-stop shop for all NOTAMs. In addition, the digital capture of the NOTAMs information and the ability to automatically publish it in multiple formats enables the NOTAM to be graphically represented, which is a major improvement for airmen. FNS also makes available both user and machine interfaces, which allows data to be available to mobile devices such as iPhones, Android-based devices, and iPads.

CGH Technologies, Inc. is a woman-owned engineering and management support company headquartered in Washington, D.C., with a workforce spanning 50 states and the US territories of Puerto Rico and Guam. CGH specializes in developing solutions to improve operational efficiencies for both their US and international clients. These solutions include management and organizational consulting, training, GIS and spatial technologies, data fusion, cloud computing, custom web and mobile applications, Software-as-a-Service (SaaS) solutions, physical and cyber security, facilities management and engineering, and modernization and standards integration.

For more information, contact CGH at info@cghtech.com or 202-554-7774. Or, visit them on the Exhibit Hall floor at Booth 728.
the controller benefits customers by decreasing costs and improving safety. This prioritization has a direct effect on value. If those values are there, that’s where the prioritization of resources has to be,” he said. “The challenge I find is working with the carriers, and getting common ground on what we have.”

Ed Sims, Airways New Zealand, said because his ANSP has been corporatized for 30 years, “politics takes up a remarkably small amount of my time.” Instead, Airways’ focus is on customers, including cost reduction, value creation, and technology and innovation.

“I encourage a state of healthy paranoia,” Sims said. “If we don’t continue to add value with increased sophistication, we face being intermediated by airlines or OEMs (original equipment manufacturers).” We’re cash constrained, and very conscious of every dollar we spend.” As a result, Airways has to think very seriously about infrastructure and service for new entrants to the airspace, like drones.

“Our customers are extremely sophisticated, competitive, and focused on performance. So we want to learn from their business models and build competitive services and resilience in our own model,” Sims said.

Kevin Shum, Civil Aviation Authority of Singapore (CAAS), said the distinctive aspect of air navigation in Asia is that there’s no single authority in charge. “We’re very much a coalition of equals. The smallest players have as big a voice as the largest players.”

Over the next five to seven years, Shum said Singapore is looking at 40 percent growth and 1 million movements in its flight information region. “But our resources aren’t going to grow 40 percent,” he said. CAAS’ biggest challenge is in manpower. It takes a long time to train a controller, and competition for controllers is intense throughout Asia, Shum said. “We manage growth on a multimodal basis. We sit down and meet a lot, we drink a lot, and we try to come up with solutions that work for everyone.”

Shum added that CAAS is looking at more automation in the future, including automated unmanned aircraft system traffic management that could be scaled up for manned aircraft. He believes the best way to help the aviation community be comfortable with changes like this is for ANSPs to get directly involved in the technology.

Despite the progress Europe has achieved under SESAR, the system is still fragmented and more expensive than Gatwick would like, McMillan said.

Maurice Georges, Direction des Services de la Navigation Aérienne (DSNA), said in France, “what’s driving the future today is demonstrable technological innovations.”

For instance, SESAR’s new technology has changed flight drastically in the last five years. “In Europe, flight plans used to be very stupid,” Georges said. “But SESAR helps us change flight plans on a daily basis—creating new, stronger customer relationships.”

“I encourage a state of healthy paranoia. If we don’t continue to add value with increased sophistication, we face being intermediated by airlines or OEMs (original equipment manufacturers).”

—Ed Sims Airways New Zealand

Surveillance

Continued from page 1

fund surveillance technology in the United States,” Burleson said.

Robert Nichols, FAA manager of surveillance services, said the FAA is moving toward an automatic dependent surveillance-broadcast (ADS-B) network and is doing a surveillance portfolio analysis. This involves working with the Department of Transportation (DOT), Department of Defense (DoD), Department of Homeland Security (DHS) and the National Oceanic and Atmospheric Administration (NOAA) on a program called SENSR (spectrum efficient national surveillance radar).

SENSR is designed to assess the feasibility of acquiring new surveillance solutions—radar or non-radar—that could potentially consolidate short-range, long-range and weather radars. The goal is to decide by 2024 if it’s feasible to vacate long-range radar, 1300-1350 MHz.

SENSR will hopefully answer questions like “What additional layers do we need in the national airspace as a backup to the ADS-B layer, which is the preferred surveillance layer?” Nichols said. If the SENS R plan is approved by Congress, the collaborating agencies are expected to release a request for information (RFI) in early 2017.

Another SENS R goal, said Rebecca Guy, FAA manager of emerging solutions, is to discover if it’s feasible to do a more efficient-spectrum consolidated surveillance system.

“We don’t know, which is why we are looking for honest feedback from industry,” Guy said. This is expected to happen during Phase I of the program, from 2016-18. “This is the phase where we define the scope and what the industry can do,” she said. The goal is to get to a 2021 decision of whether the program is feasible.

Paul Fontaine, FAA director of advanced concepts and technology development, said SENS R also offers unprecedented opportunities for industry.

“The challenge we would lay to the industry side is that this is really your time to innovate,” he said. “You’re competitors, buy you’re also collaborators. Probably no company here can singularly bring long-range, short-range, and weather radar into one system.”

Both Fontaine and Guy stressed the need for honest, transparent feedback and commentary from industry. “We know industry will say, ‘Of course we can do it,’ but the timeframe matters,” Guy said. “If we say in time for the 2024 auction that we can get out of the spectrum, but it will take 60 years to do it, the value of the sale of the spectrum tanks. We don’t expect to be out of the spectrum in 2024, but there’s a big difference between 20 years and 60 years, or getting out of the larger metropolitan areas first.”

Add ed Fontaine: “There’s a fine line between vision and hallucination. This is the challenge we are putting out to the industry because you all have the solution sets we want to explore.”
From the Exhibit Floor

ATC Slatwall Consoles Can Improve NAS Safety

Generally, when you think about the NAS, technology comes first to mind. But air traffic consoles are the furniture that holds the technology together, said David A. Rivers, director of ATC for Evans Consoles. “Consoles directly contribute to the safety of the NAS,” said Rivers during a Tuesday morning session in the ATCA Arena in the Exhibit Hall. And Slatwall, a modular, highly flexible systems console infrastructure, helps improve the safety and performance of consoles. Basically, Slatwall is a corrugated wall to which equipment can be affixed. “It’s not a new concept or product,” Rivers said. “Many companies use a version of Slatwall in their offices or cubicles.” But now, Slatwall has moved into the ATC world. Chicago’s O’Hare and Midway towers recently implemented Slatwall technology in operational control positions. According to Rivers, there are many advantages to using Slatwall in a control tower. Equipment can be mounted to the Slatwall in primary, secondary, or tertiary positions, in a myriad of configurations, and can be moved at will. Slatwall allows equipment to be placed where each controller can easily use it. For instance, Rivers said individual controllers can reposition equipment based on their height and reach. Connecting equipment to Slatwall can also improve controller sightlines by reducing the distance to the window. Slatwall makes it easy to move the console, which creates the ability to introduce new technology without a major tower reconstruction. And it allows consoles to be precisely designed for each tower cab. In addition, Rivers said Slatwall allows direct access to the technology, so it shortens maintenance response times. It also saves space, allowing ATC facilities to be smaller and cheaper to heat and cool.

The WiMAX Forum hosted its second annual AeroMACS 2016 – National Harbor event yesterday in the ATCA Arena. With keynote remarks from Erwin Lassooij of ICAO (pictured), aviation industry leaders shared insights and updates on the latest developments for AeroMACS applications, trials, certification, security, and more. Aeronautical Mobile Airport Communication System (AeroMACS) is a wireless broadband technology that provides immense value to the aviation community for airport surfaces, operating in a protected aviation spectrum band and having hundreds of applications. To learn more, visit www.WiMAXForum.org/Page/AeroMACS.

“The WiMAX Forum hosted its second annual AeroMACS 2016 – National Harbor event yesterday in the ATCA Arena. With keynote remarks from Erwin Lassooij of ICAO (pictured), aviation industry leaders shared insights and updates on the latest developments for AeroMACS applications, trials, certification, security, and more. Aeronautical Mobile Airport Communication System (AeroMACS) is a wireless broadband technology that provides immense value to the aviation community for airport surfaces, operating in a protected aviation spectrum band and having hundreds of applications. To learn more, visit www.WiMAXForum.org/Page/AeroMACS.

“A toast for the outgoing ATCA Chairman Neil Planzer, (second from left) was held at the Boeing booth in the Exhibit Hall.”

“Attendees watch the live stream of NASA’s UTM Technical Capability Level 2 (TCL2) at the UTM Zone on the Exhibit Hall floor. Interested in UTM? Don’t miss ATCA’s UTM Convention 2016. For more information or to register, visit www.utm2016.com.”

“Tony Price, FAA, tries not to crash airplanes while playing a game at the ATCA booth.”

“Attendees watch the live stream of NASA’s UTM Technical Capability Level 2 (TCL2) at the UTM Zone on the Exhibit Hall floor.”

“The WiMAX Forum hosted its second annual AeroMACS 2016 – National Harbor event yesterday in the ATCA Arena. With keynote remarks from Erwin Lassooij of ICAO (pictured), aviation industry leaders shared insights and updates on the latest developments for AeroMACS applications, trials, certification, security, and more. Aeronautical Mobile Airport Communication System (AeroMACS) is a wireless broadband technology that provides immense value to the aviation community for airport surfaces, operating in a protected aviation spectrum band and having hundreds of applications. To learn more, visit www.WiMAXForum.org/Page/AeroMACS.”

“I’m honored – it reflects the work of many, many people in developing and specifying the future of UAS flights.” — Frederick Wieland, Ph.D. of Intelligent Automation, Inc. (Booth #623), on being chosen as having the best The Journal of Air Traffic Control article of the year.”
The airspace is changing.

Are You Ready?
Join us at UTM Convention 2016!

BE A PART OF THE NEXT ERA OF AVIATION.
The world’s only event focusing on Unmanned Aircraft System Traffic Management (UTM).

REGISTER NOW!

For more information, visit UTM2016.com
#UTMConvention

November 8-10 • Syracuse, NY • Rome, NY
the optimization and path to operations begins. The process responsible for such rapid success is based on seamless coordination and collaboration worthy of the safest airspace in the world. The repeatable orchestration of resources, schedules, training and adaptation among FAA, NATCA, PASS, DoD, and Raytheon team members has resulted in a reliably smooth deployment approach and innovation that serves as a model of efficiency and innovation for the transportation industry.

STARS delivery at each deployment site has been on or ahead of schedule. If airline travel during the holiday season were as seamless, passengers would have nothing to complain about other than weather disturbances (or spending time with the in-laws). Of course, innovations to ensure accurate forecasting such as Raytheon’s Integrated Terminal Weather System and – in the future – the NextGen Weather Processor, are capable of mitigating even Mother Nature’s impact on air traffic.

As we look to the future and envision such innovation at every airport in the US, it’s worth noting that STARS is a critical foundational program for NextGen. Not only will air traffic controllers be working on the same automated platform at every tower via a single software baseline, but the FAA will also be able to easily and simultaneously update and enhance that system as needed. In fact, STARS currently has 80 percent of its computing power on reserve, so there’s more than enough room for future enhancements without affecting the system’s baseline performance. In other words, with 270 deployments under its belt, STARS isn’t simply coming in for a landing, it’s just getting ready for takeoff.